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We p re sen t  the r e su l t s  f rom an exper imen ta l  invest igat ion into t r ansp i ra t ion  and combinat ion 
cooling in the turbulent  flow of a i r  through a round tube; in addition, we p resen t  the empi r i ca l  
r e l a t ionsh ips  der ived  on the bas i s  of exper imenta l  data. 

P a r t i c u l a r  at tention is cur ren t ly  being devoted to the pro tec t ion  of the rmal ly  s t r e s s e d  su r faces  by 
means  of t r ansp i r a t i on  and fi lm cooling methods.  However ,  ve ry  few data a r e  avai lable  on heat  t r a n s f e r  
under  such cooling conditions,  when the flow of a i r  through round tubes is turbulent  [1-5]. 

The invest igat ion of heat t r a n s f e r  in a porous  tube has  been under taken in the p r e sence  of a hydro -  
dynamic  s tabi l iza t ion segment ,  connected p r i o r  to the test .  Cold a i r  is injected through the p e r m e a b l e  
walls  of the tube. A detai led desc r ip t ion  of the instal lat ion is p resen ted  in [6]; below we offer  only a b r i e f  
desc r ip t ion  of the tes t  stand and of the m e a s u r e m e n t  methods.  The porous  tube was fabr ica ted  f rom a 
f i r ec l ay - type  c e r a m i c  [7]. The d imensions  of the working sec t ions  a re :  dout = 49.2 ram, din =45.7 ram, 
and the length was va r i ed  f rom tes t  to tes t ,  i . e . ,  43 ram, 125 ram, and 238 ram, respec t ive ly .  It is e s -  
tabl ished through p r e l i m i n a r y  t e s t s  that the se lec ted  ma te r i a l  exhibits excellent  homogenei ty  and uniformity 
of its porous  s t ruc tu re  through the length of the channel. I ts  poros i ty  was 31-33% and the roughness  of the 
inside tube sur face  was 12 pro, which makes  it poss ib le  to t r e a t  the s t r eaml ined  sur face  as ae rodynamica l ly  
smooth.  This  is conf i rmed  by m e a s u r e m e n t s  of the s ta t ic  p r e s s u r e  difference a c r o s s  the length of the 
working section. The following quanti t ies  were  measu red  at the beginning of the tes t :  the flow ra te  and t e m -  
p e r a t u r e  of the p r i m a r y  and secondary  a i r  flows, the t e m p e r a t u r e  of the inside wall  at t h r e e - f i v e  points 

- with four thermocouples  at each point,  the veloci ty  and t e m p e r a t u r e  prof i les  at the outlet f rom the porous  
sect ion,  the s ta t ic  p r e s s u r e  di f ference a c r o s s  the porous  sect ion,  the b a r o m e t r i c  p r e s s u r e  and the m o i s -  
tu re  content of the ambient  medium,  and the p r e sence  of the secondary  a i r  at the inlet to the porous  s e c -  
tion. The range  of va r ia t ions  for  the p r i m a r y  r e g i m e  p a r a m e t e r s  was the following: Red = (9.5-45).  103, 
T o -- (343 �9 1)~ Tin = (293-296)~ m = pwvw/p0u0 = (0.2354-48) �9 10 -3 is the injection p a r a m e t e r .  

P r e l i m i n a r y  ca l ib ra t ion  t e s t s  were  used to de t e rmine  the unsimulated heat  l o s se s  due to leakage 
through the flange joints ,  these l o s s e s  being accounted for in the de te rmina t ion  of the h e a t - t r a n s f e r  coeff i -  
cients.  

Below we give the expe r imen ta l  h e a t - t r a n s f e r  r e su l t s  and the r e su l t s  f rom the de te rmina t ion  of the 
cooling eff iciency of the porous  tube. 

The h e a t - t r a n s f e r  coefficient  is de te rmined  f rom the re la t ionship  

~ _  q--qx (1) 
To--T~ " 

Here  qx is taken f rom the ca l ibra t ion  curve qx = f(m, Red, AT = T f l -  Tin) , while 

OCp @ .  - -  Tin ) 
q =  F 
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Fig. 1 Fig. 2 

F i g . i .  Cooling efficiency as a function of m and Red: 1) Red = 10350; 2) 16300; 3):24300; 4) 
36000; 5) 44500; 6) the data of [2]; 7) theoret ical  calculation [1]. 

Fig. 2. Effect of injection on convection heat t r ans fe r  in a porous tube: 1) theoret ical  ca lcu-  
lation [1]; 2) the given experiment;  3) the data of [3]; 4) empir ica l  curve St/St 0 = 1 - 0.36b 0 
+ 0.042 b]. 

The cooling efficiency is determined from the formula  

0 : T O - -  T w  

T O - -  Tin 
(2) 

Figure 1 shows the data for the cooling efficiency of a porous wall as a function of the injection p a r a m -  
eter  m for l d = 5.2. Compar ison with the experimental  data of [2] and with the theoret ical  calculations of 
[1] demonst ra tes  that these are  in good agreement .  The experimental  data for �9 in the case of shor ter  tubes 
( l / d =  2.84 and l / d  = 0.94) lie below the theoret ical  curve and, moreover ,  we see that these data are  more 
dist inctly layered  in t e r m s  of the Re d number.  

Figure 2 show the hea t - t r ans fe r  data for l / d  = 5.2. Here -~-~ a/Cp3~0" 3600 is the Stanton number in 
the case of injection; T 0 = 0.0306X-~ ~ is the Stanton number when there is no injection; b 0 = 
PwVw/P0"u0St0 is the reduced injection pa ramete r .  For  purposes  of comparison,  here  we also find the r e -  
sults f rom [1, 3]. Curve 1 has been plotted for bc r  = 5 .98 ,de t e rmined inaccordancewi th the recommenda t ions  
of [1] for finite Re~* numbers  

x 

I q~dx 
Re x _ 6' 

~toCp (To - -  Tw) 

(the Reynolds number,  compiled from the energy thickness 5 ~ ,  whiehprevai l s  inour  experiments  ( R e ~  
= 2.103). A s we can see,  the agreement  with the theoret ical  curve up to bn < 3 is excellent. The nonagre e merit for 
b e > 3, apparently,  eanbe explained by the reduced accuracy  inthe determinat ion of the hea t - t r ans fe r  coefficient 
as the inj ec t ionpa rame te r  increases .  The experimental  points for b 0 --- 5 are  approximatedby the following 
relat ionship:  

St/Sto = 1 - -  0.36b o + 0.042b02. (3) 

The divergence between our data and the experiments  of [3] is slight and falls within the limits of 
experimental  accuracy .  Moreover ,  it should be noted that in [3] no provis ion was made for the influx of 
heat into the c learance of the housing, into which the cooling air  enters .  

The calculation of heat t r ans fe r  for the external  problem in the p resence  of a gas screen,  according 
to [4, 5], is possible with the formulas  that are  usual for the boundary layer ,  if we assume the difference 
T~d - T w as the charac te r i s t i c  tempera ture  head.  

Data on the measurement  of the adiabatic wall t empera ture  in the case of turbulent a ir  flow in a round 
tube with a gas sc reen  have been published in [6]. The tes ts  were ca r r i ed  out in the same installation as in 
[6], but with T w = const. The heat flows were determined both from the heat balances of the various sec -  
tions and by integration of the tempera ture  and velocity fields at the various sections,  over the length of the 
tube. A detailed descript ion of the measurement  method is presented in [6]. F i r s t ,  the hea t - t r ans fe r  tests  
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Fig.  3. Local  Stanton n u m b e r  as  a func t ion  of the loca l  Rex* n u m b e r :  1) St = 0 .0118/Re **~ 
�9 P r  0"75 [1]; 2) m = 0, Re d = 41700; 3) m = 0, Re d = 36300; 4) m = 0, Re d = 24100; 5) m = 

0.0094, Re d = 41700; 6) m = 0.006058, Red = 41700; 7) m = 0.004151, Red = 41700; 8) m 

= 0.007507, Red = 36700; 9) m = 0.002838, Red = 41700. 

Fig.  4. Change in/3 as  a func t ion  of.X and m for  c o m b i n a t i o n  cool ing:  1) m = 0.01164, Re d 
= 24300; 2) m = 0.0094, Re d = 41700; 3) 0.006058, Re d = 41700; 4) m = 0.003077, Red = 

24300; 5) 0.002838, Red = 41700; 6) m = 0, Red = 41700. 

w e r e  p e r f o r m e d  in the in i t i a l  s e g m e n t  to which the h y d r o d y n a m i c - s t a b i l i z a t i o n  s e g m e n t  had b e e n  connec ted  
in advance .  The c o m p a r i s o n  of our  m e a s u r e m e n t s  with the l i t e r a t u r e  data  [1] known to us shows s a t i s f a c t o r y  
a g r e e m e n t .  The v a r i a t i o n s  of the p a r a m e t e r s  i n the  t e s t s  for  combina t ion  cool ing cove red  the fol lowing 

r a n g e s :  Re d = (10-50} �9 10 a, m = PwVw/poUo = (2-35) �9 10 -a, T i n  = (293-298)~ T O = 343 ~: I~ T w = (295 
:~ 1)~ 

The  e x p e r i m e n t a l  r e s u l t s  a r e  shown in Fig.  3, where  we have denoted 

0.0118 
S t =  

Rex, O.~prO,~S ' 

Rex = u 6x/V, 
R 

0 

(4) 

(5) 

(6) 

o~ is the h e a t - t r a n s f e r  coef f ic ien t ,  

- q =  ; ( 7 )  
Ta~d--T,, 

qw is the spec i f i c  heat  flux at the wa l l ,  

q~ = GwatercpAt water iF, 

w h e r e  twa te r  denotes  the hea t ing  of the wa te r  in the cool ing  j acke t :  

A n a l y s i s  of the d e r i v e d  data  shows that  c a l c u l a t i on  of heat  t r a n s f e r  in a c c o r d a n c e  with the r e c o m -  

m e n d a t i o n s  of [4], as  r e g a r d s  the condi t ions  of the t e s t s ,  is  p o s s i b l e  only  when m < 0.01. 

The p a r a m e t e r s  6"*, 6**,  and fi = 6 * * / 6 * *  (Fig. 4) as  func t ions  of the v a r i a b l e s  m and X~ ind ica te  that  
when  m < 0.01 the t r a n s f e r  of heat  is gove rned  by the quan t i t a t ive  r e l a t i o n s h i p s  that  a r e  c h a r a c t e r i s t i c  of the 
i n i t i a l  t h e r m a l  s e g m e n t .  When m > 0.01 the i n j ec t i on  of the s e c o n d a r y  a i r  se t s  up condi t ions  at the out le t  
f rom the po rous  s ec t i on  that  a re  c h a r a c t e r i s t i c  for  developed t u r b u l e n t  flow when fi -~ 1. Ca l cu l a t i on  of the 
hea t  t r a n s f e r  by the a b o v e - i n d i c a t e d  method when m > 0.01 y i e l d s  exagge ra t ed  va lues  for  the h e a t - t r a n s f e r  
coef f ic ien t  c~. As d e m o n s t r a t e d  by our  m e a s u r e m e n t s ,  unde r  these  condi t ions  hea t  t r a n s f e r  can  be c a l -  
cula ted f rom the g e n e r a l l y  accep ted  f o r m u l a  
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Nu = O.023Re~ ~ (8) 

Here  the quantity Re d = u01d/v0i is calculated f rom the mean-mass  veloci ty at the outlet f rom the porous 
sect ion,  while the physical  p rope r t i e s  a re  de termined  f rom the mean-mass  t empera tu re  in that section. 

The condition m < 0.01 has been  der ived for a porous sect ion length of l i d  = 5.2. For  other lengths of 
the sect ion connected in advance of the tes t ,  this condition will be different .  The calculations for fl at the 
outlet f rom the porous sect ions show that when l i d  <- 5.2 the following equality is maintained: 

= 4.17 (l/d)O'54m~ (9) 

Then the inequality m < 0.01 is rep laced  by the condition fi < 1. 
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N O T A T I O N  

the Stanton number;  
the average h e a t - t r a n s f e r  coefficient over  the tube length, W/m 2. deg; 
the Reynolds number  for  the mean -mass  veloci ty  at the inlet to the porous section; 
the Reynolds number  for  the mean-mass  veloci ty at the outlet f rom the porous section; 

Reynolds number  for  the mean -mass  velocity with r e spec t  to the energy thickness;  
t r a n s v e r s e  velocity component at the wall,  m/see ;  
longitudinal velocity along the tube axis,  m / sec ;  
adiabatic wall t empera tu re ,  OK;' 
t empera tu re  at a given point on a thermal ly  insulated sur face ,  ~ 
t e m p e r a t u r e  at a g ivenpoin t ,  on an i so thermal  surface ,  ~ 
total  specif ic  heat flux, W/m2; 
specif ic  heat flux, charac te r iz ing  the heat influx through the flanges,  W/m2; 
theore t ica l  specif ic  heat flux, W/m2; 
flow ra te  of the secondary  a i r ,  kg/h; 
flow ra te  of the cooling water ,  kg/h; 
flange t empera tu re ,  ~ 
axis t empera tu re ,  ~ 
average wall t empera tu re ,  ~ 
secondary  air  t empera tu re ,  ~ 
inside tube sur face ,  m2; 
re la t ive  length of the porous section; 
re la t ive  length of the working section. 

S u b s c r i p t  

w r e f e r s  to the p a r a m e t e r s  at the wall. 
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